Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
ACS Nano ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723037

ABSTRACT

Compliant materials are crucial for stretchable electronics. Stretchable solids and gels have limitations in deformability and durability, whereas active liquids struggle to create complex devices. This study presents multifunctional yield-stress fluids as printable ink materials to construct stretchable electronic devices. Ionic nanocomposites comprise silica nanoparticles and ion liquids, while electrical nanocomposites use the natural oxidation of liquid metals to produce gallium oxide nanoflake additives. These nanocomposite inks can be printed on an elastomer substrate and stay in a solid state for easy encapsulation. However, their transition into a liquid state during stretching allows ultrahigh deformability up to the fracture strain of the elastomer. The ionic inks produce strain sensors with high stretchability and temperature sensors with high sensitivity of 7% °C-1. Smart gloves are further created by integrating these sensors with printed electrical interconnects, demonstrating bimodal detection of temperatures and hand gestures. The nanocomposite yield-stress fluids combine the desirable qualities of solids and liquids for stretchable devices and systems.

2.
Nat Commun ; 15(1): 3055, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594345

ABSTRACT

Providing additional degrees of freedom to manipulate light, spatiotemporal optical vortex (STOV) beams carrying transverse orbital angular momentum are of fundamental importance for spatiotemporal control of light-matter interactions. Unfortunately, existing methods to generate STOV are plagued by various limitations such as inefficiency, bulkiness, and complexity. Here, we theoretically propose and experimentally demonstrate a microscale singlet platform composed of a slanted nanograting to generate STOV. Leveraging the intrinsic topological singularity induced by C2 symmetry and z-mirror symmetry breaking of the slanted nanograting, STOV is generated through the Fourier transform of the spiral phase in the momentum-frequency space to the spatiotemporal domain. In experiments, we observe the space-time evolution of STOV carried by femtosecond pulses using a time-resolved interferometry technique and achieve a generation efficiency exceeding 40%. Our work sheds light on a compact and versatile platform for light pulse shaping, and paves the way towards a fully integrated system for spatiotemporal light manipulation.

3.
Opt Express ; 32(7): 11010-11021, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570960

ABSTRACT

Achieving a broadband nonreciprocal device without gain and any external bias is very challenging and highly desirable for modern photonic technologies and quantum networks. Here we theoretically propose a passive and magnetic-free all-optical isolator for a femtosecond laser pulse by exploiting a new mechanism of unidirectional self-induced transparency, obtained with a nonlinear medium followed by a normal absorbing medium at one side. The transmission contrast between the forward and backward directions can reach 14.3 dB for a 2π - 5 fs laser pulse. The 20 dB bandwidth is about 56 nm, already comparable with a magneto-optical isolator. This work provides a new mechanism which may benefit non-magnetic isolation of ultrashort laser pulses.

4.
Phys Rev Lett ; 132(15): 153801, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683010

ABSTRACT

In this Letter, we explore the intersection of chirality and recently discovered toroidal spatiotemporal optical vortices (STOVs). We introduce "photonic conchs" theoretically as a new type of toroidal-like state exhibiting geometrical chirality, and experimentally observe these wave packets with controllable topological charges. Unlike toroidal STOVs, photonic conchs exhibit unique chirality-related dynamical evolution in free space and possess an orbital angular momentum correlated with all the dimensions of space-time. This research deepens our understanding of toroidal light states and potentially advances various fields by unveiling similar wave phenomena in a broader scope of physics systems, including acoustics and electronics.

5.
Nat Commun ; 15(1): 3588, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678013

ABSTRACT

Eye tracking techniques enable high-efficient, natural, and effortless human-machine interaction by detecting users' eye movements and decoding their attention and intentions. Here, a miniature, imperceptible, and biocompatible smart contact lens is proposed for in situ eye tracking and wireless eye-machine interaction. Employing the frequency encoding strategy, the chip-free and battery-free lens successes in detecting eye movement and closure. Using a time-sequential eye tracking algorithm, the lens has a great angular accuracy of <0.5°, which is even less than the vision range of central fovea. Multiple eye-machine interaction applications, such as eye-drawing, Gluttonous Snake game, web interaction, pan-tilt-zoom camera control, and robot vehicle control, are demonstrated on the eye movement model and in vivo rabbit. Furthermore, comprehensive biocompatibility tests are implemented, demonstrating low cytotoxicity and low eye irritation. Thus, the contact lens is expected to enrich approaches of eye tracking techniques and promote the development of human-machine interaction technology.


Subject(s)
Algorithms , Contact Lenses , Eye Movements , Eye-Tracking Technology , Eye Movements/physiology , Animals , Humans , Rabbits , Man-Machine Systems
6.
Opt Express ; 32(4): 5898-5907, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439305

ABSTRACT

Quantum ghost image technique utilizing position or momentum correlations between entangled photons can realize nonlocal reconstruction of the image of an object. In this work, based on polarization entanglement, we experimentally demonstrate quantum ghost imaging of vector images by using a geometric phase object. We also provide a corresponding theoretical analysis. Additionally, we offer a geometrical optics path explanation of ghost imaging for vector fields. The proposed strategy offers new insights into the fundamental development of ghost imaging and also holds great promise for developing complex structured ghost imaging techniques. Our work expanding the principle of ghost imaging to spatially varying vector beams will lead to interesting developments of this field.

7.
Nat Commun ; 15(1): 1108, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321000

ABSTRACT

The next generation of high-capacity, multi-task optical informatics requires sophisticated manipulation of multiple degrees of freedom (DoFs) of light, especially when they are coupled in a non-separable way. Vector beam, as a typical non-separable state between the spin and orbital angular momentum DoFs, mathematically akin to entangled qubits, has inspired multifarious theories and applications in both quantum and classical regimes. Although qubit rotation is a vital and ubiquitous operation in quantum informatics, its classical analogue is rarely studied. Here, we demonstrate the logical rotation of vectorial non-separable states via the uniform self-assembled chiral superstructures, with favorable controllability, high compactness and exemption from formidable alignment. Photonic band engineering of such 1D chiral photonic crystal renders the incident-angle-dependent evolution of the spatially-variant polarizations. The logical rotation angle of a non-separable state can be tuned in a wide range over 4π by this single homogeneous device, flexibly providing a set of distinguished logic gates. Potential applications, including angular motion tracking and proof-of-principle logic network, are demonstrated by specific configuration. This work brings important insight into soft matter photonics and present an elegant strategy to harness high-dimensional photonic states.

8.
Nat Commun ; 15(1): 1478, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368404

ABSTRACT

For classical waves, phase matching is vital for enabling efficient energy transfer in many scenarios, such as waveguide coupling and nonlinear optical frequency conversion. Here, we propose a temporal quasi-phase matching method and realize robust and complete acoustical energy transfer between arbitrarily detuned cavities. In a set of three cavities, A, B, and C, the time-varying coupling is established between adjacent elements. Analogy to the concept of stimulated Raman adiabatic passage, amplitudes of the two couplings are modulated as time-delayed Gaussian functions, and the couplings' signs are periodically flipped to eliminate temporal phase mismatching. As a result, robust and complete acoustic energy transfer from A to C is achieved. The non-reciprocal frequency conversion properties of our design are demonstrated. Our research takes a pivotal step towards expanding wave steering through time-dependent modulations and is promising to extend the frequency conversion based on state evolution in various linear Hermitian systems to nonlinear and non-Hermitian regimes.

9.
Light Sci Appl ; 13(1): 48, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355692

ABSTRACT

Endowing flexible and adaptable fiber devices with light-emitting capabilities has the potential to revolutionize the current design philosophy of intelligent, wearable interactive devices. However, significant challenges remain in developing fiber devices when it comes to achieving uniform and customizable light effects while utilizing lightweight hardware. Here, we introduce a mass-produced, wearable, and interactive photochromic fiber that provides uniform multicolored light control. We designed independent waveguides inside the fiber to maintain total internal reflection of light as it traverses the fiber. The impact of excessive light leakage on the overall illuminance can be reduced by utilizing the saturable absorption effect of fluorescent materials to ensure light emission uniformity along the transmission direction. In addition, we coupled various fluorescent composite materials inside the fiber to achieve artificially controllable spectral radiation of multiple color systems in a single fiber. We prepared fibers on mass-produced kilometer-long using the thermal drawing method. The fibers can be directly integrated into daily wearable devices or clothing in various patterns and combined with other signal input components to control and display patterns as needed. This work provides a new perspective and inspiration to the existing field of fiber display interaction, paving the way for future human-machine integration.

10.
Angew Chem Int Ed Engl ; 63(12): e202319536, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38265637

ABSTRACT

Achieving circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with a high luminescent dissymmetry factor (glum ) is crucial for diverse optoelectronic applications. In particular, dynamically controlling the dissymmetry factor of CP-OURTP can profoundly advance these applications, but it is still unprecedented. This study introduces an effective strategy to achieve photoirradiation-driven chirality regulation in a bilayered structure film, which consists of a layer of soft helical superstructure incorporated with a light-driven molecular motor and a layer of room-temperature phosphorescent (RTP) polymer. The prepared bilayered film exhibits CP-OURTP with an emission lifetime of 805 ms and a glum value up to 1.38. Remarkably, the glum value of the resulting CP-OURTP film can be reversibly controlled between 0.6 and 1.38 over 20 cycles by light irradiation, representing the first example of dynamically controlling the glum in CP-OURTP.

11.
ACS Nano ; 18(3): 2335-2345, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38189251

ABSTRACT

Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Humans , Sweat/chemistry , Skin , Lab-On-A-Chip Devices
12.
Nanomicro Lett ; 16(1): 87, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214840

ABSTRACT

Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body. As the primary compliant conductors used in these devices, metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin. Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces. However, chemical modifications are typically needed for reliable bonding, which can alter their original properties. To overcome this limitation, this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes. In this physical process, soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface, which forms an interpenetrating network with the hydrogel. The microfoam-enabled bonding strategy is generally compatible with various polymers. The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids. These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels. They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing muscle contractions. Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.

13.
Nat Commun ; 15(1): 197, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172091

ABSTRACT

Branched flows occur ubiquitously in various wave systems, when the propagating waves encounter weak correlated scattering potentials. Here we report the experimental realization of electrical tuning of the branched flow of light using a nematic liquid crystal (NLC) system. We create the physical realization of the weakly correlated disordered potentials of light via the inhomogeneous orientations of the NLC. We demonstrate that the branched flow of light can be switched on and off as well as tuned continuously through the electro-optical properties of NLC film. We further show that the branched flow can be manipulated by the polarization of the incident light due to the optical anisotropy of the NLC film. The nature of the branched flow of light is revealed via the unconventional intensity statistics and the rapid fidelity decay along the light propagation. Our study unveils an excellent platform for the tuning of the branched flow of light which creates a testbed for fundamental physics and offers a new way for steering light.

14.
Light Sci Appl ; 13(1): 27, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38263398

ABSTRACT

Liquid crystals are a vital component of modern photonics, and recent studies have demonstrated the exceptional sensing properties of stimuli-responsive cholesteric liquid crystals. However, existing cholesteric liquid crystal-based sensors often rely on the naked eye perceptibility of structural color or the measurement of wavelength changes by spectrometric tools, which limits their practical applications. Therefore, developing a platform that produces recognizable sensing signals is critical. In this study, we present a visual sensing platform based on geometric phase encoding of stimuli-responsive cholesteric liquid crystal polymers that generates real-time visual patterns, rather than frequency changes. To demonstrate this platform's effectiveness, we used a humidity-responsive cholesteric liquid crystal polymer film encoded with a q-plate pattern, which revealed that humidity causes a shape change in the vortex beam reflected from the encoded cholesteric liquid crystal polymers. Moreover, we developed a prototype platform towards remote humidity monitoring benefiting from the high directionality and long-range transmission properties of laser beams carrying orbital angular momentum. Our approach provides a novel sensing platform for cholesteric liquid crystals-based sensors that offers promising practical applications. The ability to generate recognizable sensing signals through visual patterns offers a new level of practicality in the sensing field with stimuli-responsive cholesteric liquid crystals. This platform might have significant implications for a broad readership and will be of interest to researchers working in the field of photonics and sensing technology.

15.
Adv Mater ; 36(7): e2306834, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37633310

ABSTRACT

Long-lived room-temperature phosphorescence (RTP) of organic materials holds a significant potential for optical information. Circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with extremely high dissymmetry factor (glum ) values is even highly demanded and considerably challenging. Here, an effective strategy is introduced to realize CP-OURTP with an emission decay time of 735 ms and a glum value up to 1.49, which exceeds two orders of magnitude larger than previous records, through a system composed of RTP polymers and chiral helical superstructures. The system exhibits excellent stability under multiple cycles of photoirradiation and thermal treatment, and is further employed for information encryption based on optical multiplexing. The results are anticipated to lay the foundation for the development of CP-OURTP materials in advanced photonic applications.

16.
Nano Lett ; 24(1): 140-147, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37982545

ABSTRACT

Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.

17.
Nano Lett ; 23(23): 11174-11183, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38047765

ABSTRACT

Stretchable conductive nanocomposites are essential for deformable electronic devices. These conductors currently face significant limitations, such as insufficient deformability, significant resistance changes upon stretching, and drifted properties during cyclic deformations. To tackle these challenges, we present an electrically self-healing and ultrastretchable conductor in the form of bilayer silver nanowire/liquid metal microcapsule nanocomposites. These nanocomposites utilize silver nanowires to establish their initial excellent conductivity. When the silver nanowire networks crack during stretching, the microcapsules are ruptured to release the encased liquid metal for recovering the electrical properties. This self-healing capability allows the nanocomposite to achieve ultrahigh stretchability for both uniaxial and biaxial strains, minor changes in resistance during stretching, and stable resistance after repetitive deformations. The conductors have been used to create skin-attachable electronic patches and stretchable light-emitting diode arrays with enhanced robustness. These developments provide a bioinspired strategy to enhance the performance and durability of conductive nanocomposites.

18.
Nat Commun ; 14(1): 6995, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914741

ABSTRACT

Quantum storage and distribution of entanglement are the key ingredients for realizing a global quantum internet. Compatible with existing fiber networks, telecom-wavelength entangled photons and corresponding quantum memories are of central interest. Recently, 167Er3+ ions have been identified as a promising candidate for an efficient telecom quantum memory. However, to date, no storage of entangled photons, the crucial step of quantum memory using these promising ions, 167Er3+, has been reported. Here, we demonstrate the storage and retrieval of the entangled state of two telecom photons generated from an integrated photonic chip. Combining the natural narrow linewidth of the entangled photons and long storage time of 167Er3+ ions, we achieve storage time of 1.936 µs, more than 387 times longer than in previous works. Successful storage of entanglement in the crystal is certified using entanglement witness measurements. These results pave the way for realizing quantum networks based on solid-state devices.

19.
Nat Commun ; 14(1): 7180, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935685

ABSTRACT

Polarization, one of the fundamental properties of light, is critical for certain imaging applications because it captures information from the scene that cannot directly be recorded by traditional intensity cameras. Currently, mainstream approaches for polarization imaging rely on strong dichroism of birefringent crystals or artificially fabricated structures that exhibit a high diattenuation typically exceeding 99%, which corresponds to a polarization extinction ratio (PER) >~100. This not only limits the transmission efficiency of light, but also makes them either offer narrow operational bandwidth or be non-responsive to the circular polarization. Here, we demonstrate a single-shot full-Stokes polarization camera incorporating a disordered metasurface array with weak dichroism. The diattenuation of the metasurface array is ~65%, which corresponds to a PER of ~2. Within the framework of compressed sensing, the proposed disordered metasurface array serves as an efficient sensing matrix. By incorporating a mask-aware reconstruction algorithm, the signal can be accurately recovered with a high probability. In our experiments, the proposed approach exhibits high-accuracy full-Stokes polarimetry and high-resolution real-time polarization imaging. Our demonstration highlights the potential of combining meta-optics with reconstruction algorithms as a promising approach for advanced imaging applications.

20.
Sci Bull (Beijing) ; 68(19): 2164-2169, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37604721

ABSTRACT

Synthetic magnetism has been recently realized using spatiotemporal modulation patterns, producing non-reciprocal steering of charge-neutral particles such as photons and phonons. Here, we design and experimentally demonstrate a non-reciprocal acoustic system composed of three compact cavities interlinked with both dynamic and static couplings, in which phase-correlated modulations induce a synthetic magnetic flux that breaks time-reversal symmetry. Within the rotating wave approximation, the transport properties of the system are controlled to efficiently realize large non-reciprocal acoustic transport. By optimizing the coupling strengths and modulation phases, we achieve frequency-preserved unidirectional transport with 45-dB isolation ratio and 0.85 forward transmission. Our results open to the realization of acoustic non-reciprocal technologies with high efficiency and large isolation, and offer a route towards Floquet topological insulators for sound.

SELECTION OF CITATIONS
SEARCH DETAIL
...